
The Exploration of a Partially Self-Navigating Golf Cart

Courtney Nelson
Department of Computer Science

Occidental College
cnelson2@oxy.edu

2022-02-02

Abstract

The project aimed to explore the computer science
and engineering behind indoor autonomous vehi-
cles. The focus of the project was an upgrade to
the Occidental College’s Engineering Club’s so-
lar powered golf cart that would make progress
towards having the golf cart to navigate simple
indoor spaces autonomously. The purpose of this
project was to take the first step towards creat-
ing an autonomous sustainable vehicle that can
transport students around the campus. A princi-
ple component of autonomous navigation is the
utilization of sensors for mapping. The HDL-32
LiDAR from Velodyne was used for mapping with
primary processing enabled by the Point Cloud
Library. With the point cloud library fast trian-
gulation of surfaces was employed for the map-
ping of a hallway and key point identification was
used to process a simple room. For hardware,
it was discovered that the best way to communi-
cate with the solar powered golf-cart would be to
connect to the motor controllers that control for-
ward and backward motion through the solenoid
using a raspberry pi. For steering, without an af-
fordable way to connect with the front wheels, it
was decided that attaching a motor to the steering
column that directly communicates with the rasp-
berry pi would be the most feasible option. The
results of the project were the successful genera-

tion of point clouds and the completion of the first
steps of point cloud processing, in addition to the
development of a feasible plan for the computer
hardware interface and further point cloud pro-
cessing.

1 Introduction
The world is on the edge of an exciting new
technological revolution. This revolution is the
change from human operated mobile robots to
self navigating systems. This project proposes
an opportunity for Occidental’s campus to utilize
this emerging technology and knowledge. Al-
though the primary focus of autonomous vehicles
is achieving a safe self-driving automobile, there
are many practical and useful results of the opera-
tion of self-navigating robots in indoor or less dy-
namic spaces. When a robot is able to guide itself
through a task, mundane processes can be auto-
mated: liberating already busy schedules from the
chores that arise in daily life and work. For these
reasons and many others, indoor self-navigating
robots are currently on the verge of an exciting
upheaval and are likely to play an important role
in our future. Whether by assisting us in taking
out the trash, synergistically working together in
factories, or providing assistance to people with
disabilities, self navigating robots will have an ac-
tive role in our lives. One future application of

1



an extension of the proposed project, to achieve
partial autonomous navigation of a solar-powered
golf cart, is to provide rides between buildings for
students and faculty with injuries or disabilities.
This could help make Occidental’s campus more
accessible to all students.

2 Background

2.1 Localization

A key component of designing an automated mo-
bile robot is establishing its position and orienta-
tion as accurately as possible. The main method
for accomplishing this uses landmarks. With a
sufficient number of landmarks the robot is able
to accurately estimate its position and orienta-
tion. Igarashi et al. (2001) proposes a solution
that accounts for a diverse number of constraints
on path-planning and navigation. Igarashi (2001)
breaks up the challenge of robot self-navigation
into two main problems, estimation of the robot’s
location and action decision. For determining the
robot’s location an approximation of Markov lo-
calization was used. Markov localization is a
probabilistic algorithm that estimates the proba-
bility of key locations being occupied by a speci-
fied object from sensor data. Igarashi et al. (2001)
used the minimization of an objective function,
a mathematical representation of preferable mo-
tion, that depends on data, constraints, and pre-
dictions to determine location. Their navigation
algorithm is structured in the order of sensing the
enviroment, estimating the robot’s location, plan-
ning a path, taking action, and then checking if
the goal was achieved. If the goal was achieved
the robot is instructed to stop. If the goal was not
achieved then the process is repeated. A 2D lo-
calization function for the robot is described in
Equation 1.

E1(Rtαt;R
obs
t , rt−1, vt−1) = a1Edata

+ a2Ecnst + a3Eprdt (1)

Where E1 is the objective function of the robots
position, r1, a direction in two dimensions. The
constants, a1,a2, a3 are the weights of each term.
For example, Edata is the disparity, square of the
difference, between the sensed range data at the
time t and the map, data pattern, observed at the
location rt and direction αt. This objective func-
tion compares the input data with an established
map and is one of the methods that can be used
to determine the robots location. It is similar to
the landmark method because it compares its in-
putted data with the landmarks established in its
map. This method is a more sophisticated version
of using sensors such as ultra-sonic range finders
to triangulate a location from landmarks. In addi-
tion to determining its location the robot needs to
be able to map the rest of its environment. This
will be discussed in the next section.

2.2 Mapping
When there is not a prepared map of the area that
the robot will be inhabiting it is important that
the robot can build its own map of the environ-
ment. The main methods of mapping an envi-
ronment include geometric mapping, grid map-
ping, and maps generated through machine learn-
ing. The following methods of generating maps
are discussed below.

2.2.1 Geometric Mapping

Geometric maps use geometric objects to iden-
tify obstructions in the environment. Austin et
al. used primitive geometric objects for identi-
fying constraints such as line segments, arc seg-
ments, cubes, and planes. Primitive objects can
be described by a number of parameters includ-
ing, shape, size, clearance distance and the error

2



in each measurement. The goal of Austin et al.’s
research was to minimize the error for accurate
mapping. The advantage of geometric maps is
that they require less memory and therefore less
time to compute a path. Additionally, geomet-
ric maps scale well from two to three dimensions.
Although it does not scale without issues. One
main issue with three-dimensional modeling is
primitive object orientation causing errors in ob-
ject identification.

2.2.2 Grid Mapping

A basic mode of mapping is dividing a space in a
grid pattern. Each element in the grid will contain
a value. For example, a 1 or 0. If an object exists
in the cell it is assigned a 1. If an object does not
exist in the cell it is assigned a 0. One issue with
this use of a binary system is that sensors are not
always accurate, and it may be difficult to identify
whether a cell contains an object. Therefore, in-
stead of a assigning an absolute value to each cell
a probability can be assigned. Now, the path of
the robot can be determined by adjacent cells with
the lowest probability of being occupied by an ob-
ject. To generate a grid map efficiently you want
to explore the frontier of the space while avoid-
ing objects. Occupying cells with a low prob-
ability containing an object that are at the edge
of the map allows for efficient exploration of the
frontiers. Priority in the frontier algorithm will be
given to cells, with a low probability of containing
an object that is adjacent to the largest number of
unknown cells. Once the environment is mapped
the robot should be able to efficiently navigate the
space. One major limitation of the method is that
it is not effective in dynamic environments.

2.2.3 Machine Learning for Mapping

Machine learning can be used to generate priori-
ties when creating a map. For example, Igarashi et
al. (2002) formulates a path by maximizing a dis-
crete optimization problem for a given time step.

To optimize the path the objective function has
a term that accounts for the final goal position,
smoothness of path, and possibility of collision.
Igarashi et al. (2002) proposes that reinforcement
learning is a useful tool for adjusting the weight
factor of each term. Igarashi et al. (2002) ap-
plied Williams’ learning algorithm, episodic RE-
INFORCE, to establish a learning rule that would
optimize the weights of the terms of the objective
function.

A challenge of this method is that the opti-
mal path may keep the object in its current po-
sition. Since the optimization function is look-
ing to minimize the objective function the mobile
robot can get trapped in local minima. Therefore,
when minimizing the objective function continues
to point towards the same location, methods need
to be established to move forward along the path.
Igarashi et al. (2002) suggests inserting attrac-
tive sub goals to the objective function to guide
the mobile robot out of regions of local minima.
Another approach proposed by Oshiro and Kurata
is a self-organizing map for robot navigation data
from visual sensors. The model us based on Ko-
honen’s self-organization model of a cortex. Ko-
honen’s model uses a two-dimensional array of
neuron-like feature detection units for mapping.
During the learning phase the robot is set to move
randomly through the room. Then the position
and direction are recorded to map two layers, one
of position and the other of direction. In addition,
Abhishek Roy and Mathew Mithra Noel success-
fully developed a line-following robot using a hy-
brid artificial neural network. The robot that can
smoothly follow a randomly curved path.

Klingspor et al. applied machine learning to
sensor data and robot action concepts. Their strat-
egy was to break up the complex task into clear
learning steps that could be combined. The learn-
ing steps were broken down into basic features,
sensor features, group sensor features perceptual
features and action features. Klingspor et al. used
data collected by sensors on a robot moving in a
known path to start training the algorithm.

3



Using machine learning to map a space re-
quires random movement throughout the space.
Although this may be a strong method when there
time and space to train the algorithm, machine
learning is limited in its usability in complex
environments or in environments where random
movement is hazardous.

2.2.4 Corner and Edge Detection

Another method of generating maps is explicit
corner and edge detection. Stereo vision can
match the edges of images on a pixel-by-pixel
basis. This is useful for stationary imaging, but
can be problematic when the motion of the cam-
era is unknown. With a tracked edge connectiv-
ity, supplemented with some 3D locations of junc-
tions and discontinuities a wire-frame representa-
tion of the image can be constructed and used to
map the 3D space. Another method of corner and
edge detection uses changes in intensity to deter-
mine features in the map. The algorithm monitors
changes in intensity in small changes in location
of a local window. If the position of the window
is slightly adjusted with no edge in the window,
then there should only be small changes in the in-
tensity of the pixels. If the window contains an
edge, then small shifts in the window places will
result in small changes of intensity parallel to the
edge and large changes in intensity perpendicular
to the edge. If the window contains a point or a
corner and shifts will cause a large change in in-
tensity. Therefore a localized window that scans
an image and be used to determine the locations
of corners and edges in the environment. This can
then be used to generate paths.

2.3 Target Tracking

Jia et al. proposes a data fusion-based algorithm
to identify and track moving objects to optimize
self-navigation. Since both the tracked objects
and robots are in motion determining position and
trajectory is difficult. Jia et al. uses the robot’s

motion-sensors to determine the motion of the
camera and then applies an optical flow vector
field, color features, and differences in visual fea-
tures in the cameras of a stereo vision system to
determine the relative positions of the moving ob-
jects and robot. Further, Jia et al. uses an ex-
tended Kalman filter for three-dimensional target
tracking. A Kalman filter is an algorithm that uses
a sensor measurements over time to minimize sta-
tistical noise.11 To accurately describe a target
object in 3D knowledge of its size, location, ve-
locity and distance from robot are needed. Tradi-
tional target-tracking algorithms for autonomous
robots modify the environmental conditions by
adding sensors that the robot can utilize for track-
ing. This is not an option for robots looking to
traverse new environments or outdoor environ-
ments. For accurate tracking in most environ-
ments all required sensors need to be on the robot.
Jai et al. uses optical flow vectors to represent the
motion off target pixels as a sequence of images
progresses. Optical flow vectors combined with
other visual features of target objects are a means
of reliably tracking an object system in three di-
mensions. Additionally, optical flow vectors can
be used as to measure the transformation of non-
rigid target bodies. Employing optical flow-based
velocity compensation to target monitoring was
initially developed by Chang et al.

2.4 Sensors

Self-navigating robots often use sensors such as
ulta-sonar, range finder, and visual sensors to esti-
mate its position. This process is called odometry.
It is the process of using data from motion sensor
to estimate their position over time. Leading sen-
sors that supply data necessary to build maps will
be discussed in the sections below.

2.4.1 Vision Based Maps

A visually guided robot that can navigate an en-
vironment, like other methods, by planning paths

4



and constructing maps. A stereo vision system al-
lows for the production of 3D images with accu-
rate depth. Stero-vision is the extraction of 3D
features by comparing images of the same lo-
cation from two vantage points. Murray et al.
shows that robots guided by stero-vision systems
are a viable alternative to leading methods such
as sonar and rang finders. One major limitation
is that the robot’s speed is limited by the time
it takes to compute paths from the collected im-
ages. Stero-vision systems are useful for dynamic
and complicated environments. There large field
of sight and continuous mapping makes them
a strong candidate for the sensors used in au-
tonomous navigation.

An alternative is an ocellus camera. Using
an ocellus camera Hayashi et al. implemented
a navigation system that uses feature points to
recognize significant obstructions. Hayashi et al.
demonstrated that using only the ocellus camera
the mobile robot was able to recognize and navi-
gate around an ordinary room. Further, Jaung et
al. developed a line-following system for self-
navigating robots using image processing. The
robot has a camera attachment that periodically
captures images. The images are then processed,
and the line is extracted using a high-speed rect-
angular search method.

2.4.2 Internal Sensors

Odometry can be unreliable if the sensor is inter-
nal to the robot. A common internal sensor used
to measure change in position is an encoder. This
device encounters issues when the robot slips and
the encoder does not register as a distance trav-
eled. This results in inaccurate self-location. En-
coders and other internal sensors like gyroscopes
cannot be used as the lone navigating system be-
cause they cannot handle complex or dynamic
tasks and they are prone to error.

2.4.3 External Sensors

Unlike visual sensors, other external sensors in-
cluding sonar and range finders have difficulty
dealing with outdoor or dynamic environments.
The sensors are likely to be frequently obstructed
by moving objects. Visual self-location is ad-
vantageous in highly dynamic environments. It
is a better option because it does not require
known objects to reference its position from and
the range of mapping is not limited by direct line
of sight. Ultrasonic sensor are widely used for
robots needing to avoid obstacles because they are
simpler than many other methods and when used
in parallel with other sensors they can be very ef-
fective. For example Choi combines the visual
image from the CCD camera with the ultrasonic
sensor to determine the optimal path.

Another alternative is a LIDAR (Light Detec-
tion and Ranging) sensor. LIDAR is commonly
used as a primary sensor to lead self driving cars.
Specifically, a LIDAR sensor send out a laser
pulse and measures how long does it takes to re-
flect of a surface and return to the sensor. Most li-
dars use a time of flight calculation between when
the pulse of the laser is sent and when it is re-
flected and then received. LIDARs can be used
for 3D maps by sensing a depth of each obstruc-
tion in surrounding the device. Scanning LIDARs
have a 360 degree range. They are optimal for
generating maps and for use on self-driving ve-
hicles. The biggest deterrent for the use of scan-
ning LIDAR sensors is their high price point. In
contrast, ingle point lidars are more affordable but
they only can scan a single point. The LIDAR
sensor generates a point cloud, which allows for
the mapping of 3D field of view.

Additionally, Zunaidi et al used multiple in-
ternal sensors to improve the relative position
measurements of individual sensors. The mobile
robot was equipped with an encoder, gyroscope
and accelerometer. By cross checking the infor-
mation from the encoder with that from the gy-
roscope and accelerometer they were able to in-

5



crease their accuracy. Although this method is
only reliable for use in laboratory or indoor con-
ditions since a bump or small disturbance in the
wheels can cause an unpredictable error in the en-
coder’s count. The optimal sensor for this appli-
cation is a LIDAR device.

3 Ethical Considerations
In addition to technical challenges, there are also
societal challenges in introducing self-navigating
robots to daily life. These challenges include job
loss for workers whose jobs are based on man-
ual labor or operating machinery. This includes
jobs displaced by self-navigating robots that are
not self-driving cars. Further, this added mobility
comes with large amounts of risk. Including de-
termining liability if someone is injured. As this
technology is developed it is important that so-
ciety is legally and culturally preparing itself for
the changes that come with new technology. Al-
though there are many challenges in implement-
ing self-navigation for robots, it is an important
research area to pursue. Self navigation has the
potential to transform many aspects of work and
society for the better.

4 Methods

4.1 Overview

4.2 Materials
• Solar-Powered Golf Cart

• Motor to rotate steering column

• HDL-32E LiDAR by Velodyne

• Raspberry Pi 3 B+

• Laptop

• Power Supply

• Testing area with simple obstacles

• Motor for Steering Column (Future Work)

4.3 Hardware

4.3.1 Golf Cart Drive Train

Figure 1: Solar powered golf cart that was built by
Occidental College’s engineering club and the primary
vehicle for this project.

The project was based on a solar powered ”golf
cart”, shown in Figure 1, built by the engineering
club at Occidental College nine years ago. The
golf-cart was built out of a re-purposed electric
bike and recycled car and bike parts. Since the
drive train of the golf-cart was primarily devel-
oped from an electric bike hardware with primary
power derived from solar powers it is significantly
limited in its power and its hardware compatibil-
ity. The golf-cart was equipped with three motor
controllers. One motor controller was in use on
the two rear wheels to control speed. In addition,
there was a motor controller on each front wheel

6



for steering that were not currently in use in favor
of manual steering.

The Crystalyte CT4825S motor controllers
connected to the front wheels are nine years old
and had little manufacturing information. After
discussions from the manufacturer, it was decided
that the circuitry of the motor controllers were
incompatible with any standard micro-computer.
The result of this challenge is that the micro-
computer will not be able to directly operate the
individual wheels. The proposed alternative is to
attach a motor to the steering column and drive
the motor using the micro-computer. The chal-
lenge with this method is implementation and
speed control. This does not solve the challenge
of communicating with the thrust. The plan to
communicate with the thrust includes wiring the
micro-computer directly to the servo that is at-
tached to both back wheels. Therefore the speed
would be controlled through the rear wheels and
the direction would be controlled by rotating the
steering column.

4.3.2 On-board Sensor

The mapping sensor in use for the project is a
Light Detection and Ranging Sensor (LiDAR).
A LiDAR measures the distance and intensity
of objects in its line of sight by illuminating a
point in space with laser light and measuring
the time elapsed and the difference in intensity
between the outgoing laser light and the reflected
incoming light. The collection of points can
then be plotted in three dimensional space that
denotes depth and uses color to assign intensity.
The collection of the data points with depth and
intensity is a point cloud. In conjunction with
inertial data such as relative location and velocity
a full working map of the space can be developed
and paths with low probability of collisions can
be constructed.

The LiDAR used for this project is the
HDL-32E. Its information packets are 1206

byte payloads which consist of twelve 100
byte records followed by 4 bytes of a 32 bit
unsigned integer time stamp in microseconds
and 2 blank bytes. For each 100 byte record
there is one identifier and the beginning of the
record followed by a two byte segment giving the
rotational position followed by 32 sets of 3-bytes
which report information about each laser fired
from the sensor. The next two bits report the
distances at which the light is reflected to the
nearest .2 cm. The remaining byte in the 100
byte sequence encodes the intensity on a scale of
0 - 255. The laser safe for vision with a 903nm
wavelength and a 70m measurement range. The
vertical field of vision is +10.67 degrees to -30.67
degrees with a 360 degree horizontal field of
view (VeloView 2015). The sensor requires 12V
so the golf cart will need to run the sensor off of
an additional 12V battery rather than using the
solar panels. The output of the sensor is 700,000
points/second and therefore requires significant
computational power for on board data storage
and processing. The most powerful reasonably
priced micro-computer suitable for this project
is the Raspberry Pi 3 Model B+, which will be
discussed in the next section.

4.3.3 Computing Hardware

For computing hardware the main decision was
between an Arduino and a Raspberry Pi. The
Raspberry Pi was chosen because it has more
computing power than an Aurduino, which is nec-
essary for using the LiDAR. At about 1,000 ro-
tations per minute the LiDAR is in taking a sig-
nificant amount of data per second as discussed
above. The Raspberry Pi 3 Model B+ is a 1.4GHz
64-bit quad-core processor. Although the Rasp-
berry Pi 3 Model B+ is one of the most powerful
micro-computer it has still had computational dif-
ficulty when trying to install software. It looses its
display capabilities and has screen freezing while
running at maximum processing power. Addi-
tionally, the time it takes to download programs

7



and packages was much longer by hours that the
installation on a laptop. Further the installation of
useful programs for the display and processing of
point clouds are experimental at best on Raspian,
the operating system for raspberry pi that is mod-
eled off of Debian and is a Linux based operat-
ing system. For Veloview one of the primary pro-
grams used for this project the install of VeloView
onto Raspian has not been completed successfully
and documented. Forums discussing the imple-
mentation have few active participants and non
signs at this time of success. Therefore to use
VeloView for introductory display and processing
a laptop was necessary. In future work the instal-
lation of VeloView, Point Cloud Library, and the
Robot Operating System would be a strong next
step towards onboard data processing from the Li-
DAR.

4.4 Software
4.4.1 Veloview Implementation

VeloView, preforms real-time visualization
and processing for Velodyne’s HDL sensors.
VeloView was used for point cloud visualization,
map construction and debugging. VeloView dis-
plays distance measurements from the LiDARs
point cloud data and supports color mapping.
VeloView was installed using a binary package
on both Windows and Linux. Then re-installed
from source onto Linux operating to get ac-
cess to processing capabilities that are under
development.

To access the experimental processing algo-
rithms through VeloView requires the a manual
build with the following dependencies for Linux
machines:

• build-essential

• cmake

• git

• flex

• byacc

• python-minimal

• python2.7-dev

• libxext-dev

• libxt-dev

• libbz2-dev

• zlib1g-dev

• freeglut3-dev

• pkg-config

With careful implementation, the above packages
were successfully installed. This list lacked one
major component Qt5, a framework for software
development. The challenge has been in build-
ing Qt for the raspberry pi and configuring for
the build. There are resources for installing the
current Qt onto a raspberry pi but the process has
many dependencies and intricacies. The source
version of VeloView utilizes the Point Cloud Li-
brary (PCL) though a plug. PCL a well known
open source C++ library with tools to work with
point clouds. The PCL plugin allows users to gen-
erate filters to process there data that are specifi-
cally relevant to there project. Examples of appli-
cations where the PCL Plugins are used is robot-
arm guiding, multi-sensor autonomous calibra-
tions, and the automatic detection of objects.

To select the operating system best suited for
point cloud processing a dual booted laptop with
Linux and Windows was used. Unfortunately
both operating systems have issues with the de-
pendencies for PCL. On windows the install of
PCL from a pre-made binary for visual studio
2017 was possible. PCL compiled from a binary
was able to run basic commands and visualize
data but the grabber for Lidar Data is only com-
patible with a manual build of the newest PCL li-
brary. After successfully installing PCL the PCL’s
dependencies on Linux PCL from source was able

8



to be install with the majority of its features en-
abled.

4.4.2 Robot Operating System

Additionally ROS the Robot Operating System
was installed as a alternative method to do the
SLAM processing. Over the duration of the
project having point clouds displayed in ROS was
achieved, but there were challenges in getting
ROS and PCL to communicate with each other.

4.5 Point Cloud Processing

4.5.1 Simultaneous Localization and Map-
ping

The first step in VeloView’s Simultaneous Local-
ization and Mapping (SLAM) algorithm is key
point extraction. During key point extraction
the algorithm identifies discontinues in boarders,
edges, and corners, and continuities in local re-
gions that can be approximated as surfaces. Once
all of the boarders, edges, corners, and surfaces
have been detected primitive geometric models
are constructed. These models in conjunction
with GPS or inertial information then fed into a
Kalman Filter to more accurately position each
point edge and plane of the point cloud. Kalman
filters intake an original estimate for the location
of a singular point in the point cloud and its un-
certainty then compare the prediction to the mea-
surement from the LiDAR and its experimental
and instrumental uncertainties to update the po-
sition of both the LiDAR and the location of ob-
jects in the space. For implementation through
an algorithm the main mathematical model uses
matrices. The mathematical model of the matrix
modifications are included below.

The initial estimate for the position and mo-
mentum of each point in the point cloud denoted
as X0 and P0 where X0 is the six dimensional
state matrix which contains information on the
position of the point in three dimension and the

velocity of the point in the dimensions. In clas-
sical mechanics every object can be uniquely de-
scribed by its position and momentum. Therefore
the X0 matrix fully describes the necessary com-
ponents of the state of each particle. P0 is pro-
cess covariance matrix, which holds information
about the uncertainty of the state of each point. A
covariance matrix gives the covariance between
pairs of its elements. The variation in the values
of the elements gives the uncertainty of the state
of a given point. The initial prediction of the state
of a point and its uncertainty are then modified by
the following equations to update there values to
correspond to the current location of the sensor.
The modification to the matrices are shown in the
following equation.

Xk = AXk−1 +BUk +Wk (2)

Where Xk resulting state matrix after manipula-
tion, Xk−1 denotes the state matrix before manip-
ulation, Uk is the control variable matrix which
uses GPS or inertial data to quantify the forces
acting on the given point in the point cloud and
Wk is the predicted noise covariance matrix which
measure the error in the manipulation of the pre-
vious matrix. Further A and B are adaptation ma-
trices that assist in the conversion process from
the previous approximation to the new approxi-
mation.

The updated process covarinace Pk is given

Pk = APk−1A
T +Qk (3)

Where Pk−1 is the previous matrix, Qk is the pro-
cess noise covarience matrix, and A is the adapta-
tion matrix that assists in the conversion process.
After updating the predicted state it is ready to be
used in conjunction with the measured value to
make a new estimate of the state of the point in
the point cloud. The next step in the Kalman filter
process is to calculate the Kalman gain (K) which
assigns a weight to the prediction versus the mea-
sured value. The Kalman gain is shown below:

K =
PkH

HPkHT +R
(4)

9



Where H is an adaptation matrix and R is the sen-
sor noise covariance matrix which is the error in
the measurement.

The Kalman Gain in conjunction with the mea-
sured value Y and the predicted value Xkp are
used to calculate the new estimate of the state ma-
trix of the point particle.

Xk = Xkp +K[Y −HXk] (5)

This process continues for each particle in the
point cloud until the process covarience matrix
has uncertainty less than the uncertainty thresh-
old set by the program.

This process is highly effective and can be im-
plemented in real time or on prerecorded data
in VeloView. There are run time issues with
the SLAM algorithm currently used in VeloView
which resulted in the SLAM processing for this
project needing to be done offline. For this project
the hardware included a HDL-32E LiDAR from
VeloView, but didn’t not include the accompany-
ing GPS unit. Therefore a SLAM processing of
the data from the LiDAR unit through VeloView
possible was not possible for this project. There-
fore as a test for future work the SLAM program
was run on existing data from Velodyne.

Figure 2: SLAM on data collected from an HDL-32E
LiDAR from Velodyne of car driving through a park
with the LiDAR attached to the hood of the car. The
color corresponds to the intensity of the reflected light.

4.5.2 Point Cloud Library

The second type of data processing done on the
point clouds for this project used Point Cloud
Library directly. The Fast Triangulation of Un-
ordered Points algorithm by PCL was used with
some modifications on the data from the LiDAR.
The algorithm works by growing a mesh between
points with similar characteristics. The first step
of the algorithm identifies key points as discussed
in the previous subsection. The result of key point
indentification on a room is shown in Figure 3.

Figure 3: Key point identification using the point
cloud library of a room captured by the HDL-32E Li-
DAR used in this project.

The algorithm uses a covariance matrix of the
nearest neighbor points to the point in question to
look for edges and surfaces in the variance in the
x, y, and z dimensions between nearby points. To
identify the neighboring points a k-dtree is cre-
ated from the data. This is a data structure that
finds the median in each dimension of the data
and splits that data about the median. This con-
tinues in each dimension until the tree is fully
formed. An issue with this method of data orga-
nization is that nearby points can end up on sep-
arate branches of the tree is they are near the me-
dian value where the tree is split. Therefore when
forming a mesh created by the surface normals of
adjacent points some data that should be linked as
a surface are not connected. In the case where the
density of the point cloud changes rapidly this can
lead to difficulty in triangulating a surface. The

10



results of the modified Fast Triangulation of Un-
ordered Points algorithm are shown in Figure 4.

Figure 4: Fast Triangulation of Unordered Points
algorithm from the point cloud library run on data
of a room captured by the HDL-32E LiDAR used
in this project.

5 Results
This project resulted in the successful point-cloud
data collection from the HDL-32E LiDAR. In ad-
dition to the demonstration of two methods of
processing point clouds. The first, a Simultaneous
Localization and Mapping Algorithm preformed
on data collected by Velodyne using a LiDAR of
the same model. The second, the surface mapping
of a hallway using an algorithm that preforms fast
triangulation of unordered points provided by the
Point Cloud Library. In regards to hardware. The
drive train of the solar powered golf cart was ana-
lyzed and a plan was created for the implementa-
tion of computer command based driving for the
golf cart.

6 Discussion and Future Work
The purpose of this project was to explore par-
tially autonomous indoor navigation. The work
completed made progress towards the main three
components of achieving partial autonomy: hard-
ware / computer hardware interface, sensor com-
munication and implementation, and data pro-

cessing and planning. This project intended to
make progress on each major component of au-
tonomous navigation to take the first step towards
Occidental having a partially autonomous golf-
cart created by students.

The future work for hardware includes the im-
plementation of a motor onto the steering column
of the golf cart and the establishment of the com-
munication between the rear wheels of the golf
cart and the raspberry pi. For the sensor aspect of
the project the next step is to add a GPS or iner-
tial measurement unit to the golf cart for SLAM
processing of incoming data. The computational
challenge of these upgrades will primarily be in
the hardware soft-ware interface. The first chal-
lenge will be uploading the necessary software
onto a microcomputer that can accommodate the
large amount of data from the LiDAR sensor. The
next challenging step will be identifying paths in
the map generated by the SLAM algorithm and
communicating the path to the golf cart. If, in the
future, the golf cart becomes operational it will
be important to clarify the ethical considerations
of having a self-driving vehicle on Occidental’s
campus further. At this point in the development
of partially autonomous vehicles driver control in
the case of testing and malfunction is critical.

11



References
[1] H. Igarashi, K. Loi. Artif Life Robotics, 5:

72, 2001.

[2] T. Tsukiyama. Mobile robot localization
from landmark bearings. In XIX IMEKO
World Congress Fundamental and Applied
Metrology, September 2009.

[3] A. David, B. McCarragher. Geometric con-
straint identification and mapping for mo-
bile robots. Robotics and Autonomous Sys-
tems. 35:59-76, 2001.

[4] B. Mordechai, F. Modada. Elements of
Robotics. Elements of Robotics, 2018.

[5] H. Igarashi. Separating visual infor-
mation into position and direction by
SOM.Artificial Life and Robotics, 8:5-8,
2004.

[6] V. Klingspor, K. J. Morik, A. D. Rieger. Ma-
chine Learning. 23:305, 1996.

[7] S. Mahlknecht, R. Oberhammer, G. Novak.
Real-Time Syst. 29:247, 2005.

[8] C.G., Harris, M. Stephans. A combined cor-
ner and edge detector. Alvey vision confer-
ence, Vol. 15, No. 50:10-52, 1988.

[9] Z. Jia, A. Balasuriya, S. Challa. Artif Life
Robotics 12:317, 2008.

[10] H. Musoff, P. Zarchan. Fundamentals of
kalman filtering: A practical approach.
American Institute of Aeronautics and As-
tronautics, 2009.

[11] JY Chang, WF Hu, MH Cheng, et al. Digi-
tal image translational and rotational motion
stabilization using optical flow technique.
IEEE Trans Consumer Electron 48:108-115,
2002.

[12] D. Murray, C. Jennings. Stereo Vision Based
Mapping and Navigation for Mobile Robots.
IEEE Int Conf Robotics Automation Vol.
2:1694-1699, 1997.

[13] T. Umeno, E. Hayashi. Navigation system
for an autonomous robot using an ocellus
camera in indoor environment. 2005.

[14] LH. Juang, JS. Zhang. Artif Intell Rev, 2018.

[15] S. H. Cho, Y. Kyong, S. Hong, W. D.
Cho.Self Localization Method Using Paral-
lel Projection Model for Mobile Sensor in
Navigation Applications. Journal of Com-
puter Science and Technology 24(3):588-
603, 2009.

[16] B.S. Choi, J.J. Lee. Localization of a mo-
bile robot based on an ultrasonic sensor us-
ing dynamic obstacles. Artificial Life and
Robotics 12(1-2):280-283, 2008.

[17] S. Choi, T. Jin, J. Lee. Artificial Life and
Robotics. 7:132, 2003.

[18] Velodyne. User’s Manual and Programming
Guide: HDL-32E High Definition LiDAR
Sensor. July 2015.

[19] I. Zunaidi, K. Norihiko, N, Yoshihiko, M.
Hirokazu. Positioning System for 4Wheel
Mobile Robot: Encoder, Gyro and Ac-
celerometer Data Fusion with Error Model
Method. 2019.

12


